Examination of the theta -point from exact enumeration of self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 183181
(http://iopscience.iop.org/0305-4470/18/16/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:13

Please note that terms and conditions apply.

Examination of the $\boldsymbol{\theta}$-point from exact enumeration of self-avoiding walks

Takao Ishinabe
Faculty of Engineering, Yamagata University, Yonezawa 992, Japan

Received 18 September 1984, in final form 16 April 1985

Abstract

Self-avoiding walks on the square lattice with nearest-neighbour attractive interactions are invesigated as a model for the two-dimensional version of a polymer in dilute solution. Temperature dependences of the exponent ν and the free energy of the chain are estimated from the exact enumeration data for up to 20 steps; the value of ν at the θ-point disagrees with the mean-field theory. The end-distance distribution function at the θ-point is also examined.

1. Introduction

A polymer chain in a good solvent takes the form of an extended coil owing to the excluded volume effect; the end-distance distribution is non-Gaussian. The extension of the chain with length n is characterised by $R_{n} \sim n^{\nu}$, where R_{n} is the root-mean-square end-to-end distance; the mean-field theory (e.g. de Gennes 1979) gives $\nu=3 /(d+2)$ for d-dimensional space. When the solvents are changed from good to poor or the temperature is lowered, attractive interactions between monomers become eminent: the chain transforms toward a collapsed coil decreasing in R_{n}. The excluded volume parameter vanishes around the θ temperature (or θ solvents), where two contributions of repulsion and attraction cancel each other; the chain can be treated as a phantom chain with $\nu=\frac{1}{2}$. The θ region is rather broad for finite n, but as $n \rightarrow \infty$, it tends to a unique θ-point, which is regarded as the tricritical point (de Gennes 1975), to coincide with the collapse transition point (Domb 1974). The chain itself is still non-phantom even at the θ-point although the excluded volume effect seems to disappear. As far as we are aware, there is no direct evidence that the polymer chain at the θ-point is Gaussian. The amended mean-field theory (de Gennes 1975) leads to $\nu=2 /(d+1)$ at the θ-point; it suggests that a chain at the θ-point is non-Gaussian for $d=2$, where the three-body interactions become important.

Self-avoiding walks (SAws) on lattices with an attractive force have been extensively investigated as a model of configurational properties of a polymer in dilute solution. Each pair of non-consecutive monomers occupying nearest-neighbour lattice sites contributes to the energy of the system by $-\varepsilon$. The temperature dependence of the properties is usually expressed in terms of ω, where $\omega=-\varepsilon / k T$. The dependence of ν on ω has been obtained by McCrackin et al (1973) by the use of the Monte Carlo method for three-dimensional lattices. Rapaport $(1976,1977)$ has estimated the value of ν for a relatively narrow range of ω from the exact enumeration of rather short chains $(n \leqslant 8)$ on the face-centred cubic lattice. The end-distance distribution of a chain is
obtained only for $\omega=0$ from the exact enumerations (Domb 1969, McKenzie 1973). More recently, Kremer et al (1982) and Baumgärtner (1982) have investigated the scaling properties around the collapse transition point using the Monte Carlo method for saws on the tetrahedral and square (sQ) lattices, respectively.

In this paper, we estimate the respective ω dependences of ν and the free energy of a chain for a wide range of ω, which contains the θ-point, from the exact enumeration of n-step saws on the sQ lattice for relatively large size ($n \leqslant 20$). A series analysis technique (Ishinabe 1984) improved for this purpose is used, which was efficient for the estimation of the cross-over exponent for polymer adsorption. We examine, in particular, the end-distance distribution function at the θ-point. The two-dimensional case is thought favourable for examining the θ-point since $d=3$ is a marginal case and a logarithmic correction term is involved (Moore 1977, de Gennes 1978).

2. Series analysis

Let $C_{n}(x, m)$ be the number of n-step saws having m nearest-neighbour contacts between non-consecutive vertices; x is the integer x component of the end-to-end distance R. We can obtain the mean-square end-to-end distance from

$$
\begin{equation*}
\left\langle R^{2}\right\rangle_{n}=d \sum_{x} \sum_{m} x^{2} C_{n}(x, m) \mathrm{e}^{m \omega}\left(\sum_{x} \sum_{m} C_{n}(x, m) \mathrm{e}^{m \omega}\right)^{-1}, \tag{1}
\end{equation*}
$$

where d is the spatial dimension, and the end-distance distribution function for the x component from

$$
\begin{equation*}
P(x)=\sum_{m} C_{n}(x, m) \mathrm{e}^{m \omega}\left(\sum_{x} \sum_{m} C_{n}(x, m) \mathrm{e}^{m \omega}\right)^{-1} \tag{2}
\end{equation*}
$$

at any given $\omega(=-\varepsilon / k T)$. We introduce the reduced end-distance distribution function (Chikahisa 1984) by

$$
\begin{equation*}
P^{*}(\tilde{x})=(2 / d)^{1 / 2} R_{n} P(x) \tag{3}
\end{equation*}
$$

where $\tilde{x}=(d / 2)^{1 / 2} x / R_{n}$ and $R_{n}=\left\langle R^{2}\right\rangle_{n}^{1 / 2}$. For random walks of $\omega=0, P^{*}(\tilde{x})$ can be written as

$$
\begin{equation*}
P^{*}(\tilde{x})=\pi^{-1 / 2} \exp \left(-\tilde{x}^{2}\right) \tag{4}
\end{equation*}
$$

We have obtained the first twenty terms in the $C_{n}(x, m)$ series for the sQ lattice; the values of $C_{n, m}=\Sigma_{x} C_{n}(x, m)$ and $D_{n, m}=\Sigma_{x} x^{2} C_{n}(x, m)$ are given in tables 1 and 2 , respectively. Note that these tables quote the values divided by 2 .

The estimation of ν for various ω is performed as follows: we assume that

$$
\begin{equation*}
R_{n}(\omega) \simeq R_{0}(\omega) n^{\nu(\omega)}, \tag{5}
\end{equation*}
$$

and form ratios of the alternate terms. The Neville tables are constructed for the linear and quadratic extrapolants. Then we plot these extrapolants against $1 / n$ and extrapolate to $n \rightarrow \infty$ taking into account the curvature of convergence as a whole along with the damping oscillation around it. The last process improves the accuracy of the estimation for such cases as a confluent singularity exists. An example of the estimation for $\omega=0.75$ is shown in figure 1. For $\omega=0$, we estimate that $\nu=0.748 \pm 0.002$ for the

Table 1. Values of $\frac{1}{2} C_{n, m}$ for SAWs on the sQ lattice.

m	0	1	2	3	4	5
1	2					
2	6					
3	14	4				
4	34	16				
5	82	44	16			
6	198	128	64			
7	470	368	172	76		
8	1122	1016	536	264	20	
9	2662	2688	1700	692	392	
10	6334	7112	4916	2304	1192	192
11	14970	18488	13800	7776	3212	1776
12	35506	47752	38500	22872	11320	5048
13	83734	121768	105868	66944	38152	14888
14	198086	309584	286280	193808	113188	54600
15	466314	779584	767256	553784	338428	182256
16	1100818	1958480	2036332	1548080	1001852	550464
17	2587634	4884536	5362712	4299548	2919288	1683780
18	6097830	12160776	14017564	11789048	8336508	5075456
19	14316402	30099732	36415636	32092728	23658516	15060260
20	33687146	74401912	94069808	86512192	66298236	43792632

${ }^{m}$	6	7	8	9	10	11	12
11	124						
12	1468						
13	7956	1440					
14	22620	8488	568				
15	74932	34648	10820	276			
16	269220	106080	43780	7560			
17	889152	379300	159264	61432	6692		
18	2725900	1317152	535716	210424	60816	2176	
19	8480992	4341420	1937556	774756	309920	68380	2012
20	25824256	13526488	6548420	2738832	1037412	366344	44904

SQ lattice. The mean-field value $\frac{3}{4}$ for $d=2$, which is supported by a recent analytic calculation (Nienhuis 1982), is just on the limit of the estimated uncertainty in our estimate.

3. Results and discussion

Figure 2 illustrates the plot of ν for $\omega \geqslant 0$ estimated from the above method as a function of ω; the value of ν is almost constant for small ω, but it decreases as ω increases and seems to converge to a constant value for large ω although error bars enlarge there. An inflection point is found at $\omega=0.75$ for the plot; we regard it tentatively as the θ-point (tricritical point) ω_{t}, then we estimate that $\nu_{\mathrm{t}}=0.503 \pm 0.01$

Table 2. Values of $\frac{1}{2} D_{n, m}$ for SAWs on the sQ lattice.

m	0	1	2	3	4	5
1	1					
2	8					
3	39	2				
4	152	24				
5	529	134	16			
6	1704	608	140			
7	5211	2424	710	102		
8	15344	8784	3224	728	40	
9	43907	29808	13194	3418	820	
10	122812	96592	49196	15704	4564	456
11	337293	301644	172644	65680	20118	5032
12	912536	914416	580840	249424	90536	24456
13	2437883	2705620	1884294	898256	370988	107668
14	6443668	7846688	5932864	3112456	1394668	485608
15	16875389	22369648	18229500	10403148	5029022	1973592
16	43843784	62847320	54869544	33750304	17545608	7436552
17	113113569	174334652	162228036	106868030	59214564	27049234
18	290024644	478257320	472288680	331391512	194508176	95332360
19	739530889	1299163914	1356422066	1008943132	624853266	325367266
20	1876441960	3498476512	3849256304	3023047520	1968591312	1082288528

$n>^{m}$	6	7	8	9	10	11	12
11	310						
12	4904						
13	32610	4000					
14	145028	35408	2112				
15	637490	186156	39658	698			
16	2774880	820328	237224	31440			
17	11003144	3627570	1106576	286380	24026		
18	41148980	15339904	4906828	1414464	310680	8776	
19	149460616	59999622	21226002	6435874	1871808	299422	6982
20	527152512	224085192	86759968	28590984	8548784	2261336	227672

at $\omega_{\mathrm{t}}=0.75$ (see figure 1). The value of ω_{t} is in good agreement with the estimate 0.76 tof Baumgärtner (1982) from the Monte Carlo technique while the estimated ν_{t} deviates noticeably from the mean-field value $\nu_{\mathrm{t}}=\frac{2}{3}$ for $d=2$. Our value is, however, consistent with a renormalisation group calculation (Stephen and McCauley 1973, Stephen 1975) to second order in $\varepsilon^{\prime}\left(\varepsilon^{\prime}=3-d\right)$ leading to $\nu_{\mathrm{t}}=0.506$. Recently, Kholodenko and Freed (1984) have deduced a slightly larger value 0.551 using the conformational space renormalisation group method. Thus the mean-field value for $d=2$ should be corrected.

In collapsed state for $\omega>\omega_{\mathrm{t}}$, monomer density must be constant on the inside of a coil, so that $\nu_{\mathrm{c}}=1 / d$ is expected. Figure 2 shows that $\nu_{\mathrm{c}} \approx 0.3$; it is too low compared with the expected value even if we take into account the inaccuracy of the estimation. It seems that the estimated value of ν_{c} is different from that defined from $\boldsymbol{R}_{\mathrm{g}}$ (radius of gyration); self-avoiding walks on the sQ lattice with maximum m have unexpectedly large numbers of configurations (e.g. 89808 for $n=20$ and $m=12$).

Figure 1. Ratio estimate of ν at $\omega=0.75$ from the linear extrapolants of alternate terms in series; the arrow indicates $\nu=0.503$.

Figure 2. Plot of ν against ω as estimated from the ratio method; the arrow indicates an inflection point.

The partition function of the chain can be written as

$$
\begin{equation*}
Z_{n}(\omega)=\sum_{m} C_{n, m} \mathrm{e}^{m \omega} \tag{6}
\end{equation*}
$$

where $C_{n, m}=\Sigma_{x} C_{n}(x, m)$. We assume that

$$
\begin{equation*}
Z_{n}(\omega) \sim n^{\gamma(\omega)-1} \mu(\omega)^{n} \tag{7}
\end{equation*}
$$

by analogy with the case of $\omega=0$. We can estimate $\mu(\omega)$ using the ratio method stated
above; this is nothing but the reduced free energy of the chain which is defined by

$$
\begin{equation*}
\mu(\omega)=\lim _{n \rightarrow \infty} n^{-1} \ln Z_{n}(\omega) \tag{8}
\end{equation*}
$$

The plot of $\mu(\omega)$ thus obtained as a function of ω is given in figure 3; a slight discontinuous change in the slope is noticeable at the point $\omega=0.75 \pm 0.005$, i.e. we get the same value of ω_{t} as before. We define a critical exponent λ by

$$
\begin{equation*}
\mu(\omega)-\mu\left(\omega_{t}\right) \sim\left|\omega-\omega_{t}\right|^{\lambda} . \tag{9}
\end{equation*}
$$

The relation $\lambda=2 / \varepsilon(\varepsilon=4-d)$ is suggested by Moore (1977). The plot of $\mu(\omega)$ in figure 3 supports the relation for $d=2$ since the estimated values lie on two straight lines with slightly different slopes which cross at ω_{t}.

Figure 3. Plot of $\mu(\omega)$ against ω : a discontinuous change in the slope is found at the point ($\omega=0.75$) indicated by the arrow.

Figure 4. Plot of $P^{*}(\tilde{x})$ against \tilde{x} at $\omega_{\mathrm{t}}=0.75$ for $n=10(\Delta)$ and 20 (0). : $P^{*}(0)$ extrapolated to $n \rightarrow \infty$. The full curve shows equation (4).

The plot of $P^{*}(\tilde{x})$ at ω_{t} against $\tilde{x}(\geqslant 0)$ for $n=10$ and 20 is given in figure 4. As n increases, the plot approaches the Gaussian distribution (4). The limiting value of $P^{*}(0)$ estimated from the Neville tables is 0.51 ± 0.02, which is also shown in the figure. Thus we conclude that for $d=2$ a polymer chain is almost Gaussian at the θ-point in the limit $n \rightarrow \infty$.

Acknowledgments

The author is very grateful to Professor Y Chikahisa for useful discussions. This work was partly supported by the Grant-in-Aid from the Ministry of Education, Science and Culture, Japan.

References

Baumgärtner A 1982 J. Physique 431407
Chikahisa Y 1984 Private communication
de Gennes P G 1975 J. Physique Lett. 3655
_1978 J. Physique Lett. 39299

- 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)

Domb C 1969 Adv. Chem. Phys. 15229

- 1974 Polymer 15259

Ishinabe T 1984 J. Chem. Phys. 801318
Kholodenko A L and Freed K F 1984 J. Chem. Phys. 80900
Kremer K, Baumgärtner A and Binder K 1982 J. Phys. A: Math. Gen. 152879
McCrackin F L, Mazur J and Guttman C M 1973 Macromolecules 6859
McKenzie D S 1973 J. Phys. A: Math. Gen. 6338
Moore M A 1977 J. Phys. A: Math. Gen. 10305
Nienhuis B 1982 Phys. Rev. Lett. 491062
Rapaport D C 1976 J. Phys. A: Math. Gen. 91521

- 1977 J. Phys. A: Math. Gen. 10637

Stephen M J 1975 Phys. Lett. 53A 363
Stephen M J and McCauley J L 1973 Phys. Lett. 44A 89

